
Security Audit of the Secure List Server

Part II

Guus Sliepen <guus@sliepen.org>

May 24, 2013

Abstract

The subject of this audit is Mailman 2.1.12 patched with the pgp-smime patch of 2009-04-
02, and follows the progress since the previous audit. The changes in the list of known, open
issues are reviewed. A test setup was created and the code and its behaviour were reviewed.
A number of new issues were found in the Secure List Server (SLS). Most importantly, al-
though the default settings are reasonably safe, if the administrator enables more list options
there are many possibilities for decrypted messages to be bounced, forward or stored without
being re-encrypted. The developers should reduce the number of options available to list
administrators, and continue to work on strict integrity and confidentiality enforcement.

1 Introduction

1.1 Subject of the security audit

The subject of this security audit is the Secure List Server (SLS), which consists of the Mailman
mailing list server augmented with the pgp+smime patch which allows Mailman to handle emails
which are signed and/or encrypted with OpenPGP or S/MIME in a meaningful way.

Part I of the audit covered a coarse code audit, and was focused more on usage aspects of SLS.
After reviewing the TODO list and NEWS in section ??, the flow of mail through the SLS codebase
and the issues found therein will be looked at in detail in section ??. In section ?? I will remark
on the impliciations of the recent vulnerabilities found in the SHA-1 algorithm for SLS. In section
?? I will give recommendations for future work on SLS.

1.2 Test setup

To test the functionality and behaviour of SLS, the following test setup was created:

• Asus EeePC 901 with 2 GB RAM and 20 GB storage

• Debian unstable (last update on 2009-03-25)

• Mailman 2.1.12 patched with mailman-2.1.12-pgp-smime 2009-04-02.patch

• Postfix 2.5.5-1.1 mail server

• Mutt 1.5.18-6 mail client

• Lighttpd 1.4.19-4 light-weight web server

• GnuPG 1.4.19-5

1

mailto:guus@sliepen.org

• OpenSSL 0.9.8g-15

• Python-GnuPGinterface 0.3.2-9

2 Review of TODO list and NEWS since 2008-07-03

According to the NEWS.PGP-SMIME file, the following items have changed since the patch from
2008-07-03, which was reviewed in part I of the audit:

• A test suite has been added.

At this moment, the test suite consists of a shell script that creates two sets of three mailing
lists: one set for PGP and one for S/MIME, each set containing three lists with different
security levels. It subscribes one member to each list, and can send a number of prepared
messages to each list.

There are no prepared messages included in SLS however, so one has to create them oneself.
The test suite also does not check the result of sending the messages to the list. The test
suite is still far from an automated tool for checking regressions.

• Names and description of security settings have been changed.

Some previously confusing options for allowing or requiring encryption and/or signatures
have been renamed to be more consistent, and the descriptions of those options in the web
GUI have been clarified. This will reduce the chance of an administrator misconfiguring
secure lists.

The problem that there are two sets of options, one for PGP and one for S/MIME, remains.
Again, it would be better to have one set of options for encryption and signing that is
independent of the protocols used for them.

• Members cannot change their public key once set.

This prevents an attacker who can get the password, which is assumed to be much easier
than getting the private key, to replace a subscriber’s public key with its own.

• Bounces, moderator notifications and logs of encrypted emails no longer contain the de-
crypted bodies.

Previously, a decrypted copy of an encrypted email was sent without re-encryption to mod-
erators, or sent to the syslog, which could result in unintended information disclosure. SLS
now only sends the headers of the original encrypted email in those cases.

• From address must now match one of the signature’s uids.

Since SLS strips the original signature from emails and adds its own, the other recipients can
only determine the original sender by looking at the From header. SLS now rejects incoming
emails whose From-address does not match an uid of the PGP key which signed the post.

The file TODO.PGP-SMIME has been updated, the following items have changed:

0024 “If a post is properly signed, accept it, no matter whether the From-address is subscribed and
no matter the sender moderation policy. However: Although that is possible and perhaps
desirable, one should remember that only the body of an email is signed and/or encrypted,
but not the headers. If a subscriber is allowed to change the From header at will, he can try
to impersonate another person when sending an email to the list. It is best to restrict the
contents of the From header to the email address(es) listed in the subscriber’s public key.”

SLS now indeed restricts the contents of the From header, so this item can be removed from
the TODO list.

2

0050 “Make sure posts get encrypted and signed if needed. Perhaps it is best determine whether
an incoming email as signed or encrypted, and mark this somewhere in its headers, such that
the marking does not get removed while the email is being processed by SLS. When sending
outgoing emails, preferably right before the email is sent to the SMTP server, it should be
verified that if the message is marked signed, the outgoing email is indeed signed. The same
goes for encryption (and PGP).”

SLS now adds a X-Mailman-SLS-decrypted header to emails that have been decrypted. It
is however only used to strip the body from emails that are being bounced in plaintext to
the list administrator.

0059 “Don’t use openssl and GnuPGInterface, but pyme. KMail is said to use GPGME for
S/MIME. Study its source. SMScrypto.py from http: // smallsister. org/ git/ SmallMail.

git implements crypto in python using pyme. Study its source.”

Indeed, if there is an external library that can encrypt, decrypt, sign and verify emails, and
it provides all the functionality that SLS needs, it is better to use that instead of keeping a
(different) private implementation.

Using pyme would remove the need for SLS to use temporary files and to manually start
external programs such as gpg and openssl. This removes potential security problems from
the SLS code.

3 Code audit, part II

In this second part of the code audit, I have followed the lifetime of an email, as it is processed by
SLS. I have done a line-by-line review of the points in the code where emails are decrypted and
re-encrypted. First I will give an overview of the various subsystems of mailman and how email
flows through them. Then I will look at the possible issues with the handling of decrypted, but
not yet re-encrypted, emails by SLS. Finally I will describe my findings of the code dealing with
decryption and encryption.

3.1 Mail flow

When a mailing list is created with SLS, a list of email aliases is updated. This list of aliases can
be read by the mail transfer agent (MTA), and tells the MTA what to do with emails for all the
relevant mailing list addresses. The email aliases generated by SLS for the Postfix MTA look like
this:

listname: "|/var/lib/mailman/mail/mailman post listname"

listname-admin: "|/var/lib/mailman/mail/mailman admin listname"

listname-bounces: "|/var/lib/mailman/mail/mailman bounces listname"

listname-confirm: "|/var/lib/mailman/mail/mailman confirm listname"

listname-join: "|/var/lib/mailman/mail/mailman join listname"

listname-leave: "|/var/lib/mailman/mail/mailman leave listname"

listname-owner: "|/var/lib/mailman/mail/mailman owner listname"

listname-request: "|/var/lib/mailman/mail/mailman request listname"

listname-subscribe: "|/var/lib/mailman/mail/mailman subscribe listname"

listname-unsubscribe: "|/var/lib/mailman/mail/mailman unsubscribe listname"

Where listname is replaced with the name of the mailing list. These aliases instruct the MTA to
pipe the emails it through the /var/lib/mailman/mail/mailman command. That command in
turn is a simple wrapper that runs a Python script from /var/lib/mailman/scripts/ with the

3

http://smallsister.org/git/SmallMail.git
http://smallsister.org/git/SmallMail.git

Figure 1: Representation of the Incoming and Outgoing queues. Encryption and decryption happens in
the orange boxes, red boxes process decrypted messages, red arrows signify decrypted messages being sent
in plaintext. Several handlers in the Incoming queue leak plaintext to local storage or to the Internet.

same name as the first argument. So in effect, posts to the mailing list address without any suffix
will be piped through /var/lib/mailman/scripts/post listname.

In turn, these Python scripts themselves only put the messages in so-called switchboard queues.
Messages posted to the mailing list address without a suffix will be put in the Incoming queue,
which normally resides in /var/lib/mailman/qfiles/in.

For each switchboard a /var/lib/mailman/bin/qrunner process is running. These processes are
normally started at boot time by the /etc/init.d/mailman script. Each qrunner has a loop
in which it dequeues messages from its switchboard. Each dequeued message is handled by the
dispose() function. For the Incoming queue, it is IncomingRunner. dispose(). This function

in turn puts the message in a message processing pipeline.

The pipeline consists of a number of handler objects, each of which have a process() function
which deals with the email. Each handler can change the message before it is passed on to the
next handler. A handler can also raise an exception, in which case the rest of the pipeline will
be skipped and the message will be either discarded, rejected, or held. By default, the pipeline
consists of the following handlers, in order of execution:

SpamDetect, Approve, Replybot, Moderate, Hold, MimeDel, Scrubber, Emergency, Tagger, CalcRecips,
AvoidDuplicates, Cleanse, CleanseDKIM, CookHeaders, ToDigest, ToArchive, ToUsenet, AfterDelivery,
Acknowledge, ToOutgoing.

The pipeline will be described in more detail later. If no exception is raised by any of the handlers,
then the last handler, ToOutgoing, will enqueue the message in the Outgoing switchboard. The
Outgoing queue is handled by OutgoingRunner. dispose(). By default, it processes the message
with just the SMTPDirect handler.

Decryption and encryption is taking place in the Moderate and SMTPDirect handlers respectively.
This means that decrypted content is handled by all the handlers in-between, and SLS must take
special care that decrypted content is not inadvertently leaked in these handlers. Even so, due
to the flexibility of the pipeline architecture, an administrator or an add-on package can easily
change existing handlers or insert new handlers.

3.1.1 Incoming message pipeline

SpamDetect This handler uses regular expressions on the message header to classify a message
as spam or not. It can either discard, reject or hold spam. It is configured using the
privacy/spam page on the list admin site.

Approve This handler checks if the message is pre-approved or if the list admin has added an
approval header. If so, the message tag ‘approved’ is set. The message is otherwise unaltered
and will always pass to the next handler.

Replybot This handler will send an automated reply in response to an incoming message. It is
configured using the autoreply admin page. The incoming message itself is unaltered and
will always pass to the next handler.

Moderate This handler originally only discarded, rejected, held, or allowed a message based on
whether the sender was a list member or not, or if Mailman was explicitly configured to
discard, reject, hold or allow messages from that sender. It was configured using the

4

privacy/sender admin page. In SLS, message decryption and signature verification has
been spliced into this handler. Decryption and verification is done first, then messages are
rejected, held or approved depending on the state of the encryption and signature, as con-
figured using the privacy/gpg and privacy/smime admin pages. After that the original
moderation rules are applied. Note that if messages are held in this and later handlers, they
have already been decrypted.

A detailed description of the decryption and signature verification code is given in section
??.

Hold Unless the message has already been tagged as ‘approved’, this handler holds messages if
they contain administrativia that were erroneously sent to the mailing list address, if it has
too many recipients, if it contains suspicious headers or if it is too large, as configured using
some of the options on the general admin page.

MimeDel This handler can remove MIME parts as configured on the contentfilter admin page,
or can discard, reject or forward messages to the list owner if it contains forbidden parts.

Scrubber If configured so on the nondigest admin page, this handler “scrubs” attachments from
messages and stores them in a web-accessible archive. The attachment is then replaced with
a URL to the archived copy.

Emergency If the “Emergency moderation of all list traffic” option on the general admin page is
set, this handler will hold all messages unless they have been approved.

Tagger This handler uses regular expressions to categorise messages into “topic buckets”, as
configured on the topics admin page. Messages are always passed unaltered, except for the
possible addition of an X-Topics header if it matches any topics.

CalcRecips This handler determines which list members to forward this message to, based on
their individual settings for delivery.

AvoidDuplicates This handler culls duplicates from the list determined in the CalcRecips han-
dler, if these recipients have configured duplicate message removal.

Cleanse This handler removes certain headers that should not occur in outgoing messages, such
as approval passwords. If the list has been configured as anonymous on the general admin
page, it will also remove the original From, Reply-To, Sender and X-Originating-Mail

headers, and replace the first two with the mailing list address.

CleanseDKIM This handler removes DomainKeys headers.

CookHeaders This handler adds X-BeenThere, X-Mailman-Version, Precedence, Reply-To, List-Id
and some other mailing list related headers to the message, and possibly changes the Subject
header to add a list prefix.

ToDigest If the mailing list is configured to be digestible on the digest admin page, this appends
the message to the list’s digest.mbox file. If the digest file exceeds the size threshold, it
creates a digest email and puts it in the Virgin queue, which in turn pipes it through the
CookHeaders and ToOutgoing handlers.

ToArchive If the message is not a digest, does not contain a X-No-Archive or X-Archive: no

header, and the mailing list is configured on the archive admin page to archive messages,
this handler will put a copy of the message in the Archive queue, which in turn passes it to
the archiver.

ToUsenet If the list had been configured on the gateway admin page to send copies to a Usenet
group, this handler will put a copy of the message in the News queue, which in turn will
forward the message via NNTP.

5

AfterDelivery This handler updates the statistics about the last post time and number of posts
received on the list.

Acknowledge This handler sends an acknowledgement to the sender if he has configured so.

ToOutgoing This handler puts the message in the Outgoing queue.

There are many handlers which can, if the mailing list is configured to do so, hold, reject, forward
or otherwise store decrypted messages without re-encrypting them first. Unless measures are
taken to keep the confidentiality of previously encrypted messages, SLS must either drop the
message in those situations, send back a rejection notification with just the original headers, or
just permanently disable features that interfere with the confidentiality of messages. This is a list
of issues in the Incoming pipeline that should be addressed:

• Decrypted messages being held in the Hold handler.

• Rejected, held and forwarded messages in the MimeDel handler.

• Decrypted, scrubbed attachments being made web-accessible in the Scrubber handler.

• Messages being stored unencrypted for extensive periods and re-sent time-delayed in the
ToDigest handler.

• Messages being archived unencrypted in the ToArchive handler.

• Messages being forwarded unencrypted to Usenet groups in the ToUsenet handler.

As a safeguard, the functions BounceMessage() and HoldMessage() should check for the presence
of the X-Mailman-SLS-decrypted header and prevent decrypted message bodies from being stored
or sent.

3.1.2 Outgoing message pipeline

SMTPDirect This handler sends a copy of the message to each of the recipients, possibly signed
and/or encrypted as configured using the privacy/gpg and privacy/smime admin pages.

A detailed description of the signature generation and encryption code is given in section
??.

3.2 Decryption and encryption

I will now describe the code dealing with the decryption, encryption and signature verification
and generation in detail, pointing out issues where I found them.

3.2.1 Moderate.process()

Incoming posts to lists are handled by process() in Moderate.py. The variable msg contains the
incoming message, and is modified in a number of places. First decryption of messages is tried:

• If the gpg post encrypt option is set, decryptGpg() is called.

– If gpg post encrypt is set to 2, and the message was not encrypted or if decryption
failed, the message is rejected.

6

Afterwards msg contains the decrypted message.

• If the smime post encrypt option is set, decryptSmime() is called.

– If smime post encrypt is set to 2, and the message was not encrypted or if decryption
failed, the message is rejected.

Afterwards msg contains the decrypted message.

The fact that there are different settings for PGP and S/MIME can lead to strange, inconsistent
behaviour:

• gpg post encrypt = smime post encrypt = 1: Accepts mail that is S/MIME encrypted
first and then PGP encrypted, or mail that is either S/MIME or PGP encrypted, but not
mail that is first PGP encrypted and then S/MIME encrypted.

• gpg post encrypt = smime post encrypt = 2: Accepts mail that is S/MIME encrypted
first and then PGP encrypted, but rejects the reverse order and rejects mail that is either
S/MIME or PGP encrypted.

There are only a few combinations of gpg post encrypt and smime post encrypt that make
sense. As mentioned in part I of the audit, it would be better to have one option, post encrypt,
and allow PGP and/or S/MIME encrypted emails based on whether PGP and/or S/MIME keys
have been set for the list.

The decryption functions also check signatures if present, but only for encrypted+signed messages.
The next part in the code handles messages that are only signed:

• If gpg post sign is set, but the variable signed is not set:

– If the message is of type multipart/signed, the last MIME part with type application/pgp-signature
is used as the signature, and the last MIME part with any other type is used as the
payload.

– Else, if the message is of type text/plain and not multipart, it is assumed that the
message is inline PGP, and the entire message is used as the payload.

– The gh.verifyMessage() function is called.

• If smime post sign is set, but the variable signedByMember is not set:

– The sm.verifyMessage() function is called.

• If gpg post sign is set:

– If the variable key ids is empty, hold or discard the message.

– Else, check if any sender matches any uid of the key.

∗ If not, hold or discard the message.

∗ Else, if the signature belongs to any of the keyids of any list member, set signedByMember.

• If smime post sign is set, but the variable signedByMember is still not set:

– Hold or discard the message.

Here also there are some issues:

• Just as with the gpg post encrypt and smime post encrypt options, there are many non-
sensical combinations of gpg post sign and smime post sign possible.

7

• Although SLS now checks the sender against PGP key’s uids, it only checks if any of the
senders match any uid. This allows a list member to send a signed email with himself plus
other addresses in the From header. Since the original signature is stripped, other mailing
list members cannot know which of the senders signed and sent the email.

• For S/MIME, there are still no checks if the sender is the same as the signer. For X.509
certificates, the emailAddress field in the subject DN could be used in the same way as the
uid of a PGP key. Another option would be to check only the key(s) of the sender instead
of checking the signature against all members’ certificates in sm.verifyMessage().

• For multipart/signed messages, it is assumed by SLS that the body consists of exactly
two parts, but this assumption is not asserted.

The last issue allows an attacker to reuse another member’s post to send any message he wants.
The variable payload is set to the last part that is not of type application/pgp-signature,
and signature is set to the last part that is of that type. The function gh.verifyMessage() is
then called with these variables. This means that an attacker can construct a multipart/signed

message with four parts (see figure ??): the first two with his own message and signature, which
can be made with any key. The last two parts are copied from a valid message previously sent to
the list. SLS accepts such a message if the From header matches any uid of the key of the copied
message’s signature.

Mutt, a widely used Mail User Agent (MUA), handlers multipart/signed messages with more
than two parts in a different way. It expects the first part to be the message body, and the other
parts to be signatures. It will honour the Content-Length header though, and will only read that
amount of bytes from the message, so it is possible to make it read only the first two parts.

When given the attacker’s four-part message, it will display the first part in-line, and will print
a “Good signature from” message above it. If the other parts are not ignored due to the
Content-Length header, it will display an additional “Bad signature” message for the second
application/pgp-signature part.

SLS must either discard those parts it does not check, or reject the whole message.

3.2.2 Moderate.decryptGpg()

The decryptGpg() function tries to find the ciphertext to pass to the gh.decryptMessage()

function. If the message is of type multipart/encrypted, it assumes there is one part of type
application/octet-stream that contains the ciphertext. If there are more parts, it only uses
the last of that specific type as the ciphertext, and will discard the other parts.

Although there is no information leak here, it would be better to assert that the message only
contains one part, and otherwise treat it as unencrypted at all, to prevent silent removal of MIME
parts.

3.2.3 SMTPDirect.verpdeliver()

Outgoing messages are ultimately handled by verpdeliver() in SMTPDirect.py. The following
happens:

• If the gpg distrib encrypt option is set, try to encrypt the message for each recipient.

– Also sign the message if gpg distrib sign is set.

– If no key is known for the recipient or encryption fails, and gpg distrib encrypt = 1,
send plaintext.

8

From: Alice <alice@example.org>

To: list@example.org

Mime-version: 1.0

Content-Type: multipart/signed; micalg=pgp-sha1;

protocol="application/pgp-signature";

boundary="boundary"

Content-Disposition: inline

--boundary

Content-Type: text/plain; charset=us-ascii

Content-Disposition: inline

Content-Transfer-Encoding: quoted-printable

Mallory’s message goes here.

--boundary

Content-Type: application/pgp-signature; name="signature.asc"

Content-Description: Digital signature

Content-Disposition: inline

-----BEGIN PGP SIGNATURE-----

Mallory’s signature goes here.

-----END PGP SIGNATURE-----

--boundary

Content-Type: text/plain; charset=us-ascii

Content-Disposition: inline

Content-Transfer-Encoding: quoted-printable

Email copied from Alice, a list member, goes here.

--boundary

Content-Type: application/pgp-signature; name="signature.asc"

Content-Description: Digital signature

Content-Disposition: inline

-----BEGIN PGP SIGNATURE-----

Alice’s signature goes here.

-----END PGP SIGNATURE-----

--boundary--

Figure 2: Layout of multipart/signed message with four parts. In SLS, only the last two parts are
verified. In Mutt, the first part and a “Good signature” message is shown.

9

– Else, discard the message.

• If the smime distrib encrypt option is set, try to encrypt the message for each recipient.

– Also sign the message if smime distrib sign is set.

– If no key is known for the recipient or encryption fails, and smime distrib encrypt =
1, send plaintext.

– Else, discard the message.

The issues found here are:

• Again, there are possible but nonsensical combinations of gpg distrib * and smime distrib *

options.

• The extraction of plaintext before it is passed to the encryption functions is different between
the PGP and S/MIME cases. This should be unified.

• If * distrib encrypt = 1, SLS’s behaviour allows one to send an unencrypted message
to the list and have it distributed encrypted, or allows an encrypted message send to the
list be distributed unencrypted, depending one whether subscribers have uploaded their
public keys or not. It would be better to always distribute messages encrypted if they were
posted encrypted, and unencrypted if they were posted unencrypted. To handle the case of
a dissident1 who wants to ensure emails are always sent to him encrypted, a per-subscriber
option, like always encrypt, could be added.

3.2.4 GPGUtils.py

The following issues were found in GPGUtils.py:

• The function checkPerms() is called three times, but the return value is never checked.

• In getMailaddrs(), the regular expression used to extract the email address part from the
uids is flawed. It matches the first string between angular brackets, however this means
an uid like “Mallory (<alice@example.org>) <mallory@example.com>” would yield the
wrong address, allowing Mallory to use “Alice <alice@example.org>” in the From header.
Of course, the list administrator should check all uids carefully anyway, since one can add
any uid he wants to his key.

• In decryptMessage(), the short key id from the GOODSIG response is used. However, it
would be better to use the long key id from the VALIDSIG response, to reduce the chance of
a hash collision which would allow an attacker to fake the signature of a list member.

• In decryptMessage(), the SIG_ID response should be checked: the date should not be too
far in the past or future, and it should not match any previously found SIG_ID. This would
prevent replay attacks and time delay attacks.

• In decryptMessage(), properly encrypted messages but which contain bad signatures are
still accepted, even though key ids is left empty. It would be better to outright reject such
questionable messages.

• There is a lot of code duplication between encryptMessage() and encryptSignMessage().

• In verifyMessage(), VALIDSIG and SIG_ID should be used as mentioned above.

1See http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines#debian-legal_tests_for_DFSG_

compliance for a description applied to software, but which equally applies to any kind of information a person
would want to spread.

10

http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines#debian-legal_tests_for_DFSG_compliance
http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines#debian-legal_tests_for_DFSG_compliance

3.2.5 SMIMEUtils.py

The following issues were found in SMIMEUtils.py:

• In all cases, openssl is called without an absolute pathname. This allows an attacker who
can create an arbitrary file in the $PATH of the SLS process to insert a fake OpenSSL binary.

• In decryptMessage(), a encrypted+signed message that is decrypted properly but whose
signature verification failed is accepted anyway, just as in the GPGUtils case. It would be
better to reject such messages.

• In decryptMessage(), if decryption failed an empty message is returned instead of None.

• Message signatures are checked against the list of all known certificates, but there is no
information about which certificate signed the message. This makes it difficult to check
signatures against From headers.

• In encryptMessage(), both plaintext and ciphertext are stored in temporary files created
with mkstemp(). This allows an attacker who can read files from /tmp owned by the SLS
process to acquire the plaintext of encrypted messages. It also allows plaintext to stay
indefinitely on disk. Furthermore, according to the Python documentation, “there is thus
no guarantee that the generated filename will have any nice properties, such as not requiring
quoting when passed to external commands via os.popen() ”. It is better to use the c in

handle to pipe the plaintext into openssl, having the ciphertext on disk is not a risk.

• In encryptSignMessage(), temporary files are used as in encryptMessage(). It would be
better to use the c in and c out handles to pipe plaintext into and out of openssl, but if
this does not work due to blocking of the pipes, then the AsyncRead() and AsyncWrite()

functions from GPGUtils.py should be used.

• In decryptMessage(), the cmd variable is a tuple of strings, in encryptMessage() it is just
a string. If there are spaces in any paths or in recipfile, these will be interpreted as
argument separators in encryptMessage(). The tuple form should be used here as well.

• Nowhere is the status variable checked to see if the openssl command succeeded.

• There is code duplication between decryptMessage() and verifyMessage().

4 Weaknesses in SHA-1 and its impact on SLS

Recent advances in cryptography have led to the discovery of attacks against the SHA-1 algorithm2.
The SHA-1 algorithm is used to derive fingerprints (and hence, keyids) from PGP keys, and is
used to generate signatures made with those keys. Many X.509 certificates also specify the SHA-
1 algorithm for creating signatures. The recently discovered attack reduces the complexity of
breaking SHA-1 from 279 to 252 operations, and many believe that further research will result
in even better attacks which will further reduce the complexity. Therefore, many cryptographers
recommend moving away from SHA-1 to the SHA-2 suite of hash algorithms, and to SHA-3 in
the future. At the moment, the free software community is still evaluating how to deal with the
situation3. SLS is calling external programs to deal with keys and signatures, so there is little that
will need to change. However, once migration to new keys and certificates which use stronger hash
algorithms is common, SLS should disallow members to upload keys and certificates which specify
the use deprecated algorithms, and should disallow emails with signatures that were created using
deprecated algorithms.

2http://eprint.iacr.org/2009/259.pdf
3http://lwn.net/Articles/337091/

11

http://eprint.iacr.org/2009/259.pdf
http://lwn.net/Articles/337091/

5 Recommendations

The lax checking of multipart/signed messages should be fixed first, since it allows an attacker
to pass his own message to the list if he can obtain a signed message from a list member.

After reviewing the code, I believe that afterwards, the most important task for the developers is to
seriously reduce the number of configuration options available to the list administrator. Options
that inherently compromise security, such as attachment scrubbing, archiving and support for
Usenet, should be permanently disabled and removed from the list administrator pages. The
duplicate sets of options for PGP and S/MIME, and the code duplication behind it, should be
unified into two options:

sign policy None, voluntary, mandatory.

When set to none, the list should not check or add signatures. When set to voluntary,
signatures should be checked, and if an incoming message is signed, the outgoing message
must be signed as well, otherwise it should not be signed. When set to mandatory, both
incoming and outgoing messages must be signed.

encrypt policy None, voluntary, mandatory.

When set to none, the list should not try to decrypt or encrypt messages. When set to vol-
untary, encrypted messages should be decrypted, and if an incoming message was encrypted,
the outgoing message must be encrypted as well, otherwise it should not be encrypted. When
set to mandatory, both incoming and outgoing messages must be encrypted.

The reduction in options will make it easier for list administrators to make the right choice, and will
simplify code and remove many possibly dangerous code paths. For list members, the semantics
of these options follow the principle of least surprise4; signed messages in are signed messages out,
encrypted messages in are encrypted messages out.

The next most important task is to continue developing the test suite as mentioned in part I of
the audit.

Then I would recommend fixing the processing of status and return codes from external gpg and
openssl processes. An attacker might craft malformed PGP and S/MIME messages which could
trigger unexpected behaviour if left unchecked.

Also important, but for now I believe of lesser importance than the above, are the issues found
with plaintext being stored on the host running SLS and possible attacks by local users on that
host.

6 Conclusion

The security of SLS has improved since the previous audit. However, a large number of options
available to list administrators allow unsafe behaviour to be enabled. The developers should remove
those options, and continue work on providing strict integrity and confidentiality enforcement.

4http://en.wikipedia.org/wiki/Principle_of_least_surprise

12

http://en.wikipedia.org/wiki/Principle_of_least_surprise

